First-order logic — syntax and semantics

First-order logic is also known as predicate logic and
predicate calculus
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Signature ¥ is a family of sets =F, for n > 0 and sets ¥F, for
n>1.

Elements of X/ are symbols of n-argument operations.

Elements of X are symbols of n-argument relations.
Equality sign = does not belong to .

If the signature is finite and the arities are known, it is often
presented as a sequence of symbols, e.g., +,-,0,1
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Variables and terms

We fix a countably infinite set X of individual variables.

The set of terms 75 (X) over signature X and variable set X:

@ Individual variables are terms

@ For every n > 0 and every symbol f € Z,f, if t1,...,t, are
terms, then f(t1,...,t,) is also a term

The set FV/(t) of variables occurring in t:
o FV(x) = {x}
o FV(f(t,...,ta)) = Uy FV ().
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Atomic formulas

The set of atomic formulas over ¥ and X:
@ Falsity L is an atomic formula

@ For each n > 1, each symbol r € Z,’f, and each n terms
ti,...,tn € Tx(X), the expression r(ty,...,t,) is an atomic
formula

@ For each two terms t1, tp, the expression (t; = tp) is an atomic
formula
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Formulas

The set of formulas over X and X:
@ Each atomic formula is a formula
o If p, 1 are formulas, then (¢ — ) is a formula

o If ¢ is a formula and x € X is a variable, then (Vx¢) is a
formula
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Free variables of a formula

The set of free variables FV() of a formula ¢:

o FV(L)=10;

o FV(r(tr,...,tn)) =Ul; FV (%)
o FV(t1 =) = FV(t1) U FV ()
° FV(p = ¢) = FV(p) UFV(Y)
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Free variables of a formula

The set of free variables FV() of a formula ¢:

A formula without quantifiers is an open formula.

A formula without free variables is a sentence, or a closed formula.




Syntax abbreviations

Additional propositional connectives are abbreviations:
o (—p) for p — L
o (V) for (=) = ©)
o (¢ ) for (=((=¢) v (=¥)))
o (p ) for (0 = ) A (Y — )
The existential quantifier is an abbreviation, too:

(Ixp) means (=(Vx—=y)).
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Free vs. bound occurrences of a variable

Each variable occurrence in an atomic formula is a free one

Free (bound) occurrences in ¢ and v remain free (bound) in the
formula ¢ — 1.

Free occurrences of x in ¢ become bound in Vx¢.
Occurrences of other variables in this formula do not change their
status

The distinction between free and bound variables resembles the
distinction between local and global variables in a procedure
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Semantics of formulas

A structure 2 over ¥ consists of

@ a nonempty set A: the carrier or universe of 2

@ an interpretation of each symbol f € ¥F as an n-ary function
A" A

@ an interpretation of each symbol r € % as an n-ary relation
r*C A"

Notation: 21 = (A, f%, ... £ 2, ..., r3), where
fi,...,fayr1, ..., rm are the symbols in the signature
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A valuation in a X-structure 2[ is a function p: X — A

For a valuation p, a variable x € X and an element a € A we define
a modified valuation g2 : X — A:

() = {g(y) y #x

a otherwise
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Values of terms

The value of a term t € Tx(X) in a X-structure 2 under valuation
o is denoted [t]% or [t],.

o [ = ol)
o [f(tr,....tn)]3 = FA([0]2. ... [ta]2).
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Formula satisfaction

(A, 0) = ¢ is read:

@ The formula ¢ is satisfied in the structure 2 under the
valuation .

@ The formula ¢ is true in the structure 2 under the valuation o.
The formula ¢ holds in the structure 2 under the valuation .

e (2, ) = L does not hold
@ Forn>1,rexRandterms ty,...,t,

(2, 0) = r(ty, ..., tn) iff ([ ]2, .. [ta]2) € r2.
o (A,0) | t1 = to, iff [1]% =[]

o (2, 0) = (p— 1), if (A, 0) = ¢ does not hold or (2, o) = v
holds

o (2, 0) = (Vxyp) iff for every a € A holds (2, 02) |= ¢.
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Satisfaction does not depend on non-free variables

Fact
For any X-structure 2 and any formula ¢, if valuations ¢ and ¢
assign equal values to all free variables od ¢, then

(A, 0) E o iff (A ) e

Hence simplified notation: (2, x : a,y : b) = ¢ instead of
(A, 0) E ¢, when o(x) = a and o(y) = b, and there are no other
free variables in ¢

If ¢ is a sentence, then the valuation can be disregarded.
Hence notation A = ¢
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Isomorphism of structures

Given are two structures 2 = (A,...) and B = (B,...) over

Function h: A — B is an isomorphism of ¥-structures (denoted
h: A = B) if:

@ his a bijection (onto and 1-1)
@ Forn>0,fcxfanday,...,ancA

h(fm(al, c..yap)) = f"B(h(al), ..., h(an))

° FornZl,rEZ,’f and a1,...,a, € A

gl(:1'1, ...,ap) iff r%(h(al), ..., h(ap))

r
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Properties of isomorphisms

@ Composition of two isomorphisms is an isomorphism
@ The reverse function of an isomorphism is an isomorphism

o Identity idg : A — Ais an isomorphism idg : A = 2
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Isomorphic structures

If there exists an isomorphism from 2A onto 9B then these structures
are said to be isomorphic, denoted 2 = B

The “relation” of isomorphism is
@ transitive
@ symmetrical

o reflexive
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Isomorphisms and logic

Theorem
If h:2A =B then for every formula ¢

(2,0) o iff (B,hoo) ¢

If x1,...,x, are the free variables of ¢, then

(217)(1 faly ..., Xpl an) ): ¥ IfF (%7)(1 : h(al),...,x,, : h(an)) |:SD



Isomorphisms and logic cntd.

Theorem
If A = B then for every sentence

Ak iff B
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Elementary equivalence

2A and B are elementary equivalent (denoted 24 = 9B), iff for every

sentence ¢ of first-order logic over their common signature, 2 = ¢
if and only if B = ¢

Corollary
If A =B to A=B.

Intuitively, isomorphic structures are logically indistinguishable
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Validity and satisfiability of formulas

A formula ¢ is satisfiable in 2, if there exists a valuation g in 2
such that (A, o) = ».

A formula ¢ is satisfiable, if there exists a structure 2, in which ¢
is satisfiable

@ is true (satisfied, valid) in 2, if (2, ¢) = ¢ holds for every
valuation g in 2
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Validity and satisfiability of sentences

A sentence ¢ is satisfiable if there exists a structure 2, in which ¢
is valid

20 is then said to be a model of ¢ (denoted 2 = )

Y -structure 2l is a model of a set of sentences I' (denoted 2 |=T),
if 2 = ¢ holds for every ¢ € T.

Sentence ¢ is a tautology (denoted |= ), if it is valid in every
> -structure



The first proof: theorem
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(,0) ¢ iff (B,hoo)Ew
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The first proof: Lemma

If h:2A =B then for every term ¢t

h([t) = [t

Induction:

e If tis x, then the thesis h(o(x)) = (h o g)(x) holds
o Iftto f(t1,...,ty) to

h([f(t,..., t,,)]]zl = h(fgl([[tl]]%7 . [[t,,]]%))
= 2(h([tl3), - -, h([ta]3))
= P([alfy - [talhn)
=[f(t,- ., ta)lho,
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The first proof: atomic formulas

o (A 0)~ L and (B,hop) = L

(A, 0) k= r(ty,. .., t,) iff ([t]>, ..., [ta]3) € r*
iff (h([t]),. .., h([t.]2)) € r®
iff ([l - - -» [talf,) € r®
iff (B,hoo) =r(t,..., tn)

(2, 0) |t =t iff [11]3 =[]
iff h([a]3) = h([=]3)
iff [t1]m, = [t2Dm,
i (B, ho o) =t = t,
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The first proof: compound formulas

(A, 0) E (@ =) iff (A, 0) Epor (A 0) v
iff (B,hop)Epor(B,hop) =
(B, ho o) b= (= )

(2, 0) = (¥xp) iff for all a € A holds (2, 02) = ¢
iff for all a € A holds (B, ho (02)) E ¢

iff for all h(a) € B holds (B, (ho Q)Q(a)) =
iff for all b € B holds (8, (ho Q))‘Z) =
iff (B, ho o) = (Vxip)
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Term substitution

©(t/x) is the result of substituting t for every free occurrence of a
variable x in .

Example: Formulas

° Vy(y <x)
e Vz(z < x)

express the same property

Substituting y for x in those formulas yields

° Vy(y <)
o Vz(z <y).

which are different
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o L(t/x)=1;

@ r(ty,...,tn)(t/x) = r(ti(t/x),...,ta(t/x));
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Permissible substitution

o L(t/x)=

@ r(ty,...,tn)(t/x) = r(tr(t/x),...,ta(t/x));

o (1 = t2)(t/x) = (tr(t/x) = t2(t/x));

o (¢ — ¥)(t/x) = @(t/x) = ¥(t/x);
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Permissible substitution

o L(t/x)=1;

@ r(ty,...,tn)(t/x) = r(ti(t/x),...,ta(t/x));

o (ty = t2)(t/x) = (t1(t/x) = ta(/x));

o (= ¥)(t/x) = (t/x) = (t/x)

o (Vxp)(t/x) =Vxy;

o (Vy @)(t/x) = ¥y o(t/x), when y # x, and y & FV/(t)
@ otherwise the substitution is not permissible
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Substitution lemma

Let

@ 2 be any structure o : X — A be any valuation in

@ t be any term
Then:

@ For any term s and any variable x

A _
[s(t/x)I5 = [s15:
where a = [¢]3.
@ For any formula ¢, if term t is permissible for x in ¢, then

(2, 0) |= w(t/x) iff (A 03) = o,

where a = [t]3.



